## IC3 ## Bitcoin-NG ## Building the next generation of blockchains Ittay Eyal Cornell CS, IC3 With Adem Efe Gencer, Emin Gun Sirer, and Robbert van Renesse IC3 Retreat, May 2016 ### **Blockchain's Promise and Limits** #### **Promises** - Global currency, IoT money - Bank to bank transactions (money, securities) - Smart contracts infrastructure ### **Blockchain's Promise and Limits** #### **Promises** - Global currency, IoT money - Bank to bank transactions (money, securities) - Smart contracts infrastructure With Nakamoto's blockchain: Performance – security tradeoff We present a novel blockchain: Same guarantees, but no protocol limits on performance ### **Blockchain's Promise and Limits** The concepts apply to most blockchain instances **Test case: Bitcoin** #### **Today's Bitcoin** - About 2 txn/sec - About 10 minutes latency #### **Bitcoin-NG** - About 100 txn/sec - About 10 second latency - Nakamoto's performance-security tradeoff - Bitcoin-NG - Performance experiments - Demonstration ## **A Replicated State Machine** ## The Blockchain ## The Blockchain Blockchain Log header block ## **Incentive for Mining** Wins proportional to computation power ## **Forks** ## **Forks** ## **Forks** ### **Fork Resolution** Minority attacker cannot out-run honest parties ### **Mining Power Utilization** Attacker only has to out-run the main chain ### **Tune Nakamoto's Performance?** ### **Tune Nakamoto's Performance?** #### **Metrics** #### Bandwidth - Latency - Consensus delay - Subjective time to prune - Security - Mining power utilization - Fairness ## **Block Frequency** ## **Block Size** ### **Nakamoto's Tradeoff** Replicated state machine performance typically bounded by single node performance What went wrong? This is not an inherent limit. - Nakamoto's performance-security tradeoff - Bitcoin-NG - Performance experiments - Demonstration Serialization - 1. Leader election - 2. Serialization ## **Bitcoin-NG** ### **Bitcoin-NG** - Key blocks: - No content - Leader election - Microblocks: - Only content - No contention #### **Bitcoin-NG** short deterministic intervals (5 sec) short deterministic intervals (5 sec) - Nakamoto's performance-security tradeoff - Bitcoin-NG - Performance experiments - Demonstration sudo ip link add vlo pe veth peer name vlo04b be veth peer name vlo05b be veth peer name vlo06b be veth peer name vlo07b #### ~1000 standard clients **Infrastructure**: 150 machines x 7 cores 1Gb network Network, mining: Emulated based on real-world measurements TRECCA J- DETAILER, DERST LEAT MEASUREMENTS TO THE TANK DETAIL DEST LEAT MEASUREMENTS TO THE TANK J- DETAIL MEASUREMENTS TO Validated against known network properties -i ethTPECCA j- DETALER,DEHSILBATSE,WEN e PREROUTING -p tcp -d ot-- TAND j- DETALER, -i ethTPECCA j- DETALER, DENSILBATSE, WEN etats-- e PREROUTING -p tcp -d ot-- TAND j- DETALER, DEHSILBA ## **Block Frequency** ## **Block Size** - Nakamoto's performance-security tradeoff - Bitcoin-NG - Performance experiments - Demonstration ### **Bitcoin-NG Demonstration** #### **Related Work** #### **GHOST** protocol [SZ15], inclusive blockchains [LSZ15] Improve censorship resistance. Might be combined with Bitcoin-NG #### Centralized solutions of the BFT consensus family Classical efficient techniques #### Payment channels [DW15, Lightning Network] Offload to alternative channels Bitcoin-NG maintains Bitcoin's weak model #### **Byzcoin, Hybrid Consensus** Use Bitcoin-NG's technique with epoch-length quorums to improve security and latency even further ### **Conclusion** - Bitcoin-NG a next-generation blockchain - High bandwidth - Low latency - Maintain Nakamoto's security guarantees - Measurements on 1000-node test-bed - Demonstration quick transactions - Next up: Beyond single-machine capacity