
(Short Paper): PieceWork: Generalized
Outsourcing Control for Proofs of Work

Philip Daian1, Ittay Eyal1, Ari Juels2, and Emin Gün Sirer1

1 Department of Computer Science, Cornell University,
phil@cs.cornell.edu,ittay.eyal@cornell.edu,egs@systems.cs.cornell.edu

2 Jacobs Technion-Cornell Institute, Cornell Tech
juels@cornell.edu

Abstract. Most prominent cryptocurrencies utilize proof of work (PoW)
to secure their operation, yet PoW suffers from two key undesirable prop-
erties. First, the work done is generally wasted, not useful for anything
but the gleaned security of the cryptocurrency. Second, PoW is natu-
rally outsourceable, leading to inegalitarian concentration of power in
the hands of few so-called pools that command large portions of the
system’s computation power.
We introduce a general approach to constructing PoW called PieceWork
that tackles both issues. In essence, PieceWork allows for a configurable
fraction of PoW computation to be outsourced to workers. Its controlled
outsourcing allows for reusing the work towards additional goals such
as spam prevention and DoS mitigation, thereby reducing PoW waste.
Meanwhile, PieceWork can be tuned to prevent excessive outsourcing.
Doing so causes pool operation to be significantly more costly than today.
This disincentivizes aggregation of work in mining pools.

1 Introduction

Distributed cryptocurrencies such as Bitcoin [18] rely on the equivalence “com-
putation = money.” To generate a batch of coins, clients in a distributed cryp-
tocurrency system perform an operation called mining. Mining requires solving
a computationally intensive problem involving repeated cryptographic hashing.
Such problem and its solution is called a Proof of Work (PoW) [11].

As currently designed, nearly all PoWs suffer from one of two drawbacks
(or both, as in Bitcoin). First, due to the computationally intensive nature of
PoWs, miners of popular cryptocurrencies such as Bitcoin and Ethereum require
massive computing hardware and consume natural resources such as electricity.
As mining serves no purpose other than maintaining blockchain security, these
resources are otherwise wasted. Second, the cost advantages of special-purpose
mining equipment and a desire to reduce the variance of mining rewards incen-
tivize the concentration of mining effort in large mining pools. Such concentration
of power in the hands of a small number of entities erodes the egalitarian found-
ing principles of most decentralized cryptocurrencies, starting with Bitcoin.

There are several proposed solutions to first problem of costly and difficult-to-
repurpose PoWs. Primecoin [14] is an alt-coin in which mining involves discovery



2 Philip Daian, Ittay Eyal, Ari Juels, and Emin Gün Sirer

of long sequences of prime numbers. The Primecoin PoW achieves a secondary
goal beyond blockchain security, but the economic value of its byproduct re-
mains unclear. In Permacoin [16], the mining process is replaced by proofs-of-
retrievability [13], which prove that miners are storing a large corpus of data [16].
Permacoin, however, recoups only a small fraction of wasted resource, and does
not recycle computational resources. Indeed, despite such efforts, the Bitcoin
FAQ3 continues to claim that, “To provide security for the Bitcoin network, the
calculations involved need to have some very specific features. These features
are incompatible with leveraging the computation for other purposes”.

To address the problem of mining centralization, some work has explored
the idea of preventing PoW outsourcing. Examples include Nonoutsourceable
Scratch-Off Puzzles [17], 2 Phase-Proof of Work (2P-PoW) [10], and Sign to
Mine [1]. The idea behind these schemes is to base mining on the use of a
private key that controls mining revenue. Thus outsourcing in, e.g., a mining
pool would expose the outsourcer to theft.

Other areas of work on proof of work outsourcing involve studying solutions
to attacks on outsourcing work proofs. In such attacks, an unscrupulous worker
that finds a full PoW solution might choose not to submit it to the outsourcer,
a problem called withholding. Workers can, in many cases, act in this way to
harm an outsourcer’s overall profit at little to no cost to themselves, as they are
still getting compensated for partial solutions. (Another, blockchain-level form
of this attack is known as the block withholding attack [7] [9].)

Our contribution: PieceWork

We introduce PieceWork, a generalized scheme for restructuring standard hash-
based PoWs that addresses the two drawbacks of existing PoWs described above.
As we explain, PieceWork encompasses a number of existing PoW construction
ideas, particularly from [10, 11]. PieceWork decomposes a PoW into two sequen-
tial exponentially distributed computational problems called puzzles. In Piece-
Work, a PoW consists of a kin-bit hard inner puzzle and a kout-bit-hard outer
puzzle. We call this modification two-stage hashing [10].

Inner puzzles are outsourceable as small units of work called puzzlets. A miner
can delegate puzzlet-solving safely to other, potentially untrusted workers. Puz-
zlets in PieceWork are also reusable, meaning that they can serve useful goals
beyond blockchain security. These include spam deterrence [8, 2], denial-of-service
mitigation [12], MicroMint coin generation [11, 22], Tor relay payments [4], and
more. As an enhancement, we show how puzzlets can be computed by workers
non-interactively. Our puzzlets are based on the computation recycling ideas
(“breadpudding protocols”) in [11]. That work predated Bitcoin, though, and
thus didn’t address distributed cryptocurrencies and problems such as with-
holding [21], a significant barrier preventing the reuse of outsourced work in
PoW currencies today.

In contrast, outer puzzles can be non-outsourceable, i.e., solved safely only by
the miner receiving the mining reward for a given PieceWork PoW. For example,

3 Referenced 11 Dec. 2016 at https://en.bitcoin.it/wiki/FAQ.



PieceWork: Generalized Outsourcing Control for Proofs of Work 3

by leveraging the mechanism 2P-PoW, PieceWork can cause outsourcing of outer
puzzles to result in exposure to theft of mining rewards.

PieceWork permits tuning of kin and kout, and thus the amount of per-
missible outsourcing in a cryptocurrency. Through gradual adjustments to kin
and kout, PieceWork thus also supports graceful migration from outsourceable to
non-outsourceable work. By inducing changes slightly over time, PieceWork can
enable a mining community to adjust its equipment and organization over time.

In summary, our contributions in introducing PieceWork are as follows:

– Unified PoW outsourcing framework: PieceWork offers a unified PoW con-
struction that incorporates a number of previously proposed ideas on safe
(withholding-resistant) outsourcing, reusable PoW work, tunable outsourc-
ing, and prevention of outsourcing in mining pools. PieceWork adapts these
ideas, some predating Bitcoin, to modern cryptocurrencies and specifies them
precisely, as some proposed ideas include unspecified details.

– PoW reuse: By offering concrete examples of computation reuse in Piece-
Work, we show that PoWs can both enforce blockchain security and serve
practical and economically valuable secondary goals—refuting the Bitcoin
Wiki claim to the contrary. Additionally, we show how puzzlets can be com-
puted by workers non-interactively, making their deployment practical for
the applications we describe.

– Novel technical extensions: PieceWork includes novel technical extension to
previous ideas, including non-interactive outsourcing and double-harvesting.

2 PieceWork: Two-Stage Hashing, Puzzles, and Puzzlets

We now present the technical details of PieceWork. We start with a description
of how hash-based PoWs work, and then describe how such PoWs are modified
in PieceWork.

2.1 Background: Hash-based PoWs

Most PoWs in distributed cryptocurrencies adhere to the same general structure
as that in Bitcoin, which we focus on for concreteness. Our description here and
of PieceWork thus generalize to other cryptocurrencies (e.g., Ethereum).

The Bitcoin PoWs involves finding a valid solution n to the following problem:

SHA-2562{v ‖ Bl ‖ MR(TR1, . . . ,TRn) ‖ T ‖ n}
≤ target,

where v is a (software) version number, Bl denotes the last generated block,
TR1, . . . TRn is a set of valid transactions not yet confirmed, MR(x) denotes
the root of the Merkle tree over transactions x, T is the current Unix timestamp,
n is a nonce in the space N , and target is a 256-bit value that determines the
difficulty of the mining operation. It is updated according to the generation times
of the last 2016 blocks.

We may abstract away the details of the mining problem by defining

X = v ‖ Bl ‖ MR(TR1, . . . ,TRn) ‖ T.



4 Philip Daian, Ittay Eyal, Ari Juels, and Emin Gün Sirer

to be the collection of inputs specific to a block. We let H(·) represent the
hashing operation SHA-2562 and, for brevity, let Z = target.

A Bitcoin mining operation then involves, for block value X, the discovery of
an input (“nonce”) n ∈ N for which H(X,n) ≤ Z. We refer to this hash-inversion
problem as the “Bitcoin puzzle”, designed to achieve several properties essential
to the Bitcoin system described in [16]: predictable effort, fast verification, and
precomputation resistance.

2.2 Basic PieceWork scheme

PieceWork relies on a hierarchical form of hashing that we call two-stage hashing.
In PieceWork, we partition the hash function H into a pair Fin and Fout of
sequentially composed functions that we refer to as the “inner” and “outer”
puzzles. A global puzzle is then of the following form:

H(X,n) = Fout(X,Fin(X,n; s)).

and is considered valid when the inner and outer puzzles evaluate to below the
respective targets. Here, s is an extra input used for the purposes of puzzlet
recycling and discussed in detail in Section 3.

We refer to the inner function as a puzzlet. A valid solution to a puzzlet is a
pair (n, s) that satisfies I = Fin(X,n; s) ≤ Zin.

A solution (n, s) to a puzzlet is also a solution to the global puzzle if it
satisfies the additional condition Fout(X, I) ≤ Zout.

Both Fin and Fout must have the additional desired conditions of being
cheap to compute, and being independently identically distributed across in-
stances. The former condition allows for the fast verification required in the
global scheme, and the latter allows for an exponential block generation curve
that can be tuned predictably by adjusting the target. In general, we focus on
hash functions or functions that hash the results of a constant-time function to
achieve the latter property. This includes the double-SHA256 scheme currently
used in Bitcoin.

In PieceWork, an outsourcer provides a puzzlet to a worker with a specified
value of s (whose selection we explain in Section 3). Thus an outsourced puzzlet
P takes the form:

P = (X,Zin, s).

The task of the worker is to find an n such that (n, s) solves a puzzlet. The
expected computation of the worker is R/Zin executions of Fin. The outsourcer
can, however, quickly check the correctness of a solution (n, s) to P .

Each solution to P represents one or more potentially valid preimages for Fout

for the outsourcer to try. On average, the outsourcer must try R/Zout inputs to
Fout to find a solution to the global puzzle.

Tunability. Tuning inner and outer puzzles to any desired difficulty is straight-
forward. By setting Zin and Zout, an expected number of hash iterations 2kin

and 2kout can be enforced for inner and outer puzzles respectively. Such tunabil-
ity is a feature of 2P-PoW [10], and thus PieceWork can support the migration
from higly outsourceable to outsourcing resistant mining proposed there.



PieceWork: Generalized Outsourcing Control for Proofs of Work 5

Non-outsourceability of outer puzzles. By choosing Fout appropriately, it
is possible to make outer puzzles non-outsourceable. We discuss possible ap-
proaches in Section 3.3.

2.3 Full PieceWork scheme: Adding withholding resistance

Bitcoin puzzles in their current form are in fact already outsourceable. Mining
pools can outsource a block solution puzzles to miners (workers in our scheme),
and reward these miners for partial proofs of work, or solutions to the block
problem that satisfy some weaker target than the global difficulty target.

Block withholding arises when a worker can determine whether her work
constitutes a full PoW solution. In the basic version of PieceWork specified above,
a worker can determine whether puzzlet I represents a global puzzle solution.
She can then choose to withhold it from the outsourcer.

A solution to this problem is to conceal from a worker whether or not her
solution to an outsourced puzzle represents a full PoW solution. In PieceWork,
such concealment is possible with a slight enhancement to the basic PieceWork
scheme as follows:

PW (X,n) = Fout(X,Fin(X,n; s, rin), rout), (1)

where rin = H0(r) and rout = H1(r) for distinct hash functions H0, H1 and a
secret value r. Thus a puzzlet takes the form:

P = (X,Zin, s, rin). (2)

Note that the dependence between rin and rout is important: If rin were
selectable by the outsourcer independently of rout, the outsourcer could, for
a single puzzlet solution I, solve for a valid rout, and, with 1/Zout work on
expectation, easily find a global puzzle solution.

Withholding was called out as urgent on the Bitcoin developer mailing list
in 2015 [21]. The mailing list post on block withholding mentions a “two-stage
target mechanism” that may perhaps resemble our scheme; we were able to
find one public reference to the details such a scheme in [23]. That solution
suffers from potential rounding bias, lacks a full specification, and postdates
a scheme developed by Back to solve similar withholding problems in original
implementations of HashCash [3].

3 Applying PieceWork

We now discuss the application of PieceWork. We explain how puzzlets in Piece-
Work can be used to recycle computation. We also explain how puzzlets can be
computed by workers non-interactively, making their deployment more practical.
Then we show how PieceWork may be used to prevent outsourcing.

3.1 Outsourceable Puzzlet Applications

A puzzlet solution has an easily quantifiable expected value for an outsourcer in
PieceWork. Suppose that V is the value generated by a successfully mined block.
Then the expected value of a puzzlet solution is V/Z. Their value is probabilistic,



6 Philip Daian, Ittay Eyal, Ari Juels, and Emin Gün Sirer

much like micropayments in [15], but may be made non-probabilistic by an
outsourcer joining a traditional mining pool.

By judicious setting of s, outsourceable puzzlets can be used to perform useful
computations in other domains. Interactive applications with short timeouts are
preferred, allowing for a high probability that a puzzlet will be applicable to the
current latest Bitcoin block. In this section, we describe some sample applications
and effective choices for s that accomplish these goals.

Spam deterrence Dwork and Naor [8] proposed a scheme in which the sender
of a piece of e-mail attaches the solution to a puzzlet. A receiver only accepts
e-mail with a valid puzzlet solution. Puzzlets are receiver-specific in this scheme,
so a would-be spammer incurs the high cost of solving puzzles for a large number
of receivers. Dwork and Naor’s puzzle construction was complicated, but can be
easily replaced with a hash-based PoW, as in [2].

As a receiver of e-mail cannot easily transmit a newly generated, block-
specific value s to a sender before the sender transmits e-mail, we propose that
s = H(Digest‖Header) for some CRHF H.

DoS deterrence “Client puzzles” are hash-function inversion puzzles that a
client must solve to receive a resource from a server, such as a TCP or TLS
connection [12, 20] or DNS query information. This scheme helps deter DoS
attacks, as it would require an attacker to solve many puzzles.

We can set s = H(Client IP‖fresh), with the freshness parameter being a
shared random variable to prevent stale puzzle recycling.

MicroMint Rivest and Shamir [22] proposed a digital cash system called Mi-
croMint, in which coins are minted via hash collisions. MicroMint mimics the
economics of a real, physical mint, where there is a high base cost for design
of coinage, the purchase of machinery, etc. The incremental cost of producing
coins, though, is small. Similarly, MicroMint requires many hashes to find the
first coinworthy collision. Subsequent collisions accumulate quickly thereafter.

Jakobsson and Juels [11] showed how the problem of computing a hash image
can be made moderately hard so that the problem serves as a puzzlet. Their
scheme can be easily instantiated in PieceWork. In this case, s is the hash of a
secret minting key and an unique puzzlet index. (See [11] for details; some slight
modifications to the original scheme are required for PieceWork.)

MicroMint outsourcing in PieceWork can be combined with outsourcing for
DoS resistance, i.e., a worker can simultaneously help produce MicroMint coins
and aid in DoS prevention. We call this idea double-harvesting.

Tor relay payments Biryukov and Pustogarov [4] proposed mining outsourc-
ing as a means for clients to pay relays in Tor. Their scheme suffers in current
schemes like Bitcoin from the withholding problem, and therefore would benefit
from PieceWork. In one variant, a relay runs its own mining pool. In a second
variant, a relay itself serves as a worker in a mining pool and further outsources
work. This latter application motivates a possible variant of PieceWork involving
extension to three-phase hashing.



PieceWork: Generalized Outsourcing Control for Proofs of Work 7

3.2 Non-interactive puzzlet construction

Ideally, a worker could determine a puzzlet on its own. For example, an e-mail
sender should not need to interact with the receiver to select a puzzlet [24].

In this case, the outsourcer may publish a public key PK (with corresponding
private key SK) such that: (1) rin may be computed from PK and X by the
worker by means of a deterministic function f and (2) rout may be computed
from SK and X by the outsourcer by means of a deterministic function g. The
correctness of rout must additionally be publicly checkable.

As an example, let (SK,PK) = (x,Gx) for G a generator of group G of
order q in which Computational Diffie-Hellman is hard and x ∈R Zq a randomly
selected secret key. Then f(PK,X) = Hf (PK,X) for a hash function H ′ and
g(SK,X) = Hg(X)x for a suitable one-way function Hg : {0, 1}∗ → G.

The correctness of rout may be proven using a NIZK proof. In this case, g
together with the proof constitute a Chaum-Pedersen signature [6].

Alternatively, if G is an admissible group for a bilinear map ê : G×G→ G′
[5], then it is possible to verify the correctness of rout by checking the equality

ê(Hg(X), PK)
?
= ê(rout, G).

3.3 Non-Outsourceable Puzzlet Applications

An existing approach to outsourcing resistance represented by 2P-PoW and Sign
to Mine, outlined informally in [10] and [1] respectively, can easily be plugged
into the inner puzzles of PieceWork. These schemes involve puzzles based on
the application of a digital signature, rather than a hash function. The proposal
is that the private key for the puzzle should be identical to that for spending
mining rewards. In our scheme, this would prevent outsourcers from pooling
worker resources. In PieceWork, the outer function may be defined as, e.g.:

Fout = H(SIGprivkey(X,Fin(X,n; s, rin))), (3)

with the inner function representing the standard Bitcoin block solution, option-
ally at a lower reuseable difficulty. There are a few provisos. First, we empha-
size that such nonoutsourceability is heuristic, and not accompanied by formal
guarantees in the sense of “weak” outsourceability in [17]. It is possible in prin-
ciple digital signing can be securely outsourced—meaning that a “helper” can
substantially reduce the computation a signer needs to perform in computing a
signature without the helper learning the private key. In practice, however, there
is no known effective scheme for outsourcing computation in ordinary signature
schemes such as RSA and discrete-log-based schemes, e.g., ECDSA [19]. Thus,
signing-based puzzles may be heuristically assumed to prevent outsourcing.

Second, it has been argued (including in the comments of [10]) that, rather
than disincentivizing large pools, such a scheme could support outsourcing in
which workers place money in escrow that they forfeit should they steal mining
rewards. We omit discussion of this argument here, but note that escrow schemes
are complicated to implement and would disincentivize many workers, given that
escrow amounts would need to match block reward amounts.



8 Philip Daian, Ittay Eyal, Ari Juels, and Emin Gün Sirer

4 Conclusion

We have shown that computation in Bitcoin and similar cryptocurrencies need
not be wasted, and outlined how a configurable percentage of this computation
can be repurposed for protection against e-mail spam, denial of service, and other
micropayment-style applications. We have established in PieceWork a framework
for defining our puzzles, and unified 2-Phase-PoW, Sign To Mine, and tunably
outsourceable two-stage puzzles that counter block withholding under a single
model. We hope this will help future efforts in the outsourceable cryptocurrency
computation space more effectively and rigorously define their schemes.

Acknowledgments

This work is funded in part by NSF grants CNS-1330599, CNS-1514163, CNS-
1564102, CNS-1561209, and CNS-1518779, ARO grant W911NF-16-1-0145, and
IC3 sponsorship from Chain, IBM, and Intel.

References

1. ziftrcoin: A cryptocurrency to enable commerces. https://d19y4lldx7po3t.

cloudfront.net/assets/docs/ziftrcoin-whitepaper-120614.pdf (2014), ac-
cessed: 2016-11-05

2. Back, A.: Hashcash - a denial of service counter-measure. http://www.hashcash.
org/papers/hashcash.pdf (2002)

3. Back, A.: Hashcash-amortizable publicly auditable cost functions. Early draft of
paper (2000)

4. Biryukov, A., Pustogarov, I.: Proof-of-work as anonymous micropayment: Reward-
ing a tor relay. In: International Conference on Financial Cryptography and Data
Security. pp. 445–455. Springer (2015)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. Advances
in Cryptology–CRYPTO 2001 pp. 213–229 (2001)

6. Chaum, D., Pedersen, T.P.: Wallet databases with observers (extended abstract).
In: CRYPTO. pp. 89–105 (1992)

7. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)

8. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: CRYPTO.
pp. 139–147 (1993)

9. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy.
pp. 89–103. IEEE (2015)

10. Eyal, I., Sirer, E.G.: How to disincentivize large bitcoin
mining pools. http://hackingdistributed.com/2014/06/18/

how-to-disincentivize-large-bitcoin-mining-pools/ (2014), accessed:
2016-11-05

11. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: Com-
munications and Multimedia Security. pp. 258–272 (1999)

12. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: NDSS. pp. 151–165 (1999)

13. Juels, A., Jr., B.S.K.: PORs: proofs of retrievability for large files. In: ACM CCS.
pp. 584–597 (2007)

14. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work. July 7th
(2013)



PieceWork: Generalized Outsourcing Control for Proofs of Work 9

15. Micali, S., Rivest, R.L.: Micropayments revisited. In: Proc. Cryptography Track
at RSA Conference 2002. pp. 149–263 (2002)

16. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: Repurposing bitcoin
work for data preservation. In: 2014 IEEE Symposium on Security and Privacy.
pp. 475–490. IEEE (2014)

17. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 680–691. ACM (2015)

18. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.
org/bitcoin.pdf (2008)

19. Nguyen, P., Stern, J.: The béguin-quisquater server-aided rsa protocol from
crypto95 is not secure. In: ASIACRYPT. pp. 372–379. Springer (1998)

20. Nygren, E., Erb, S., Biryukov, A., Khovratovic, D.: TLS client puzzles exten-
sion draft-nygren-tls-client-puzzles-01. IETF Internet-Draft (2016), expires 30 Dec.
2016

21. Priest, C.: [bitcoin-dev] we need to fix the block withholding attack. https:

//lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/

012059.html (2015), accessed: 2016-11-05
22. Rivest, R.L., Shamir, A.: PayWord and MicroMint–two simple micropayment

schemes. In: International Workshop on Security Protocols. pp. 69–87 (1997), (Also
published in RSA Laboratories’ CryptoBytes, Spring 1996)

23. Todd, P.: Re: [bitcoin-dev] we need to fix the block withholding at-
tack. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/

2015-December/012069.html (2015), accessed: 2016-11-05
24. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New client puzzle outsourcing

techniques for dos resistance. In: ACM CCS. pp. 246–256 (2004)


