SGX and cryptocurrencies

Warren He
Mitar Milutinovic
Dawn Song

Overview

Goal: Improve blockchain technologies using SGX, a hardware trusted computing
platform.

SGX Overview
Consensus
Smart Contracts
Issues
Summary

Lightning talk: automatic analysis and proof of correctness of smart contracts

SGX Overview

SGX

Key parts:

e |[solation
e Attestation
e Platform services

SGX

Key parts:

e Isolation
e Attestation
e Platform services

Intel SGX (Software Guard Extensions)

Application System calls

OS Kernel t;

Devices

CPU

A new set of CPU instructions available on Intel Skylake microarchitecture.

Intel SGX (Software Guard Extensions)

Application System calls

Enclave
/A OS Kernel

(CPU

T

Run code in a hardware-protected container, called an enclave.

Devices

Intel SGX (Software Guard Extensions)

Application System calls

Enclave
OS Kernel

CPU

Isolated from other software, even the operating system kernel.

Devices

Intel SGX (Software Guard Extensions)

ECALL/OCALL

T\ Application System calls
Enclave
\ OS Kernel t;
Devices
CPU\ /\
\J

\

Pure computation, plus the enclave can talk to the application that embeds it.

Intel SGX (Software Guard Extensions)

Emulator

Enclave?

OS Kernel

CPU

How does the code know that it's really running in an SGX enclave?

SGX

Key parts:

e |[solation
e Attestation
e Platform services

SGX Remote Attestation

If the CPU had a key, could it sign something?
The CPU can’t prove anything to the enclave.

But the CPU can prove something to someone else.

SGX Remote Attestation

The attestation protocol proves that a specific piece of code ran on suitable
hardware, producing a specific result.

The proof is a signed statement (by the CPU’s key), called a quote

You can contact Intel's server to verify the quote

SGX

Key parts:

e |[solation
e Attestation
e Platform services

Intel SGX Platform Services

Augments SGX instructions with Intel-provided closed-source components:

e Set up the CPU to create quotes
o Provisioning enclave
o Launch enclave
o Quoting enclave

e Platform service enclaves

o Monotonic counters
o Trusted relative time

How can SGX help with blockchains,
cryptocurrencies, and smart contracts?

Consensus

SGX and proof of work

Run existing proof of work schemes inside enclave

Create a quote for results

Verify by validating quote

// Inside SGX.

function sGxXPoW (nonce, difficulty)
result < ORIGINALPOW (nonce, difficulty)
assert ORIGINALPOWSUCCESS(result)
return SGX.REPORT((nonce, difficulty))

end function

// Outside SGX.

function POW (nonce, difficulty)
report < SGXPOW (nonce, difficulty)
return SGX.QUOTE(report, null)

end function

SGX and proof of work

Sidesteps the ASIC vs. non-ASIC debate

Democratizes mining

SGX and proof of work

Wrap other kinds of work. Even useful work?
Doesn’t need efficient proof algorithm

Security depends on SGX

Proof of time 8

Proof of work schemes are energy 1:

inefficient.

We can use SGX to simulate
proof of work on input X

Figure out how long the
work on X would take
Wait for that long;

// Inside SGX.
counter <— INCREMENTMONOTONICCOUNTER()

function sGxPoT (nonce, duration)
SLEEP(duration)
newCounter <~ READMONOTONICCOUNTER()
assert counter = newCounter
return SGX.REPORT({nonce, duration))

end function

// Outside SGX.

. 8: function PoT(nonce, duration
don’t do any computation 9: ()

Return a quote to prove 10:
that you waited for X 11:

report <— SGXPOT (nonce, duration)
return SGX.QUOTE(report, null)
end function

Proof of time 2

10:
11

// Inside SGX.
counter <— INCREMENTMONOTONICCOUNTER()

function scXPOT (nonce, |duration)
SLEEP (duration]

newCounter <~ READMONOTONICCOUNTER()
assert counter = newCounter

return SGX.REPORT((nonce, duration))

end function

// Outside SGX.

function PoT (nonce, |duration)
report < SGXPOT (nonce,|duration)
return SGX.QUOTE(report, null)

end function

Proof of time 2 - Intel Distributed Ledger

Intel’s own distributed ledger project (Sawtooth Lake) waits a random amount of
time in an enclave. Time waited is similar to Bitcoin.

6CcO0795. ..
32856085. ..
efc9asdf...
33bf7353...
31a75a03...
598fc24b...
c052d575. ..
dg824325d. ..
fd3f6615...
f2c4d943...
d9799954. ..
fb2eb5e0. ..
439696f5. ..
c7882894...
00000000. . .

https://github.com/intelledger

Proof of time 2 - Intel Distributed Ledger

Intel’s own distributed ledger project (Sawtooth Lake) waits a random amount of
time in an enclave. Time waited is similar to Bitcoin.

6CcO0795. ..
32856085. ..
efc9asdf...
33bf7353...
31a75a03...
598fc24b...
c052d575. ..
d824325d. ..)
fd3f6615...)
f2c4d943...
d9799954. ..
fb2eb5e0. ..
439696f5. ..
c7882894...
00000000. . .

https://github.com/intelledger

Proof of time 2 - Intel Distributed Ledger

Intel’s own distributed ledger project (Sawtooth Lake) waits a random amount of
time in an enclave. Time waited is similar to Bitcoin.

6CCcO0795.
32856085. . . 1.0}]
efc9asdf. .. o p=0.2

33bf7353... 08k o e p=0.5 .
31a75a03... \ £ —08

598fc24b. .. p=0.

c052d575. ..
dg24325d. . . ~ : PR :
tasfeers. X geometric distribution
f2c4d943. .. ¥

P(X=x)
i

439696F5. . .
c7882894. .. 0.0,
00000000. . . 0

d9799954. . . 0.2 o]
fb2ebseo. . . PI‘[X - IE] — (1 _ p)k‘—lp t\\)\?
2 4

https://github.com/intelledger

Proof of time 2

10:
11

// Inside SGX.
counter <— INCREMENTMONOTONICCOUNTER()

function sGXPoOT (nonce, duration)
[SLEEP| duration)
newCounter <~ READMONOTONICCOUNTER()
assert counter = newCounter
return SGX.REPORT({nonce, duration))
end function

// Outside SGX.

function PoT (nonce, duration)
report <— SGXPOT (nonce, duration)
return SGX.QUOTE(report, null)

end function

Proof of time 2 - Implementation

Secure Sleep

l

Record start time
|
/ ‘
Service
enclave

Return to untrusted

Waited
enough?

Done

Proof of time g - Implementation

Key challenge: prevent parallel execution

e Doesn't use all CPU resources
e How can enclave instances know about each other?

Proof of time 2 - Implementation

Key challenge: prevent parallel execution
Solution: counters

e (during node setup) create a monotonic counter
sgx_create _monotonic_counter(*counter_uuid, *value)

e increment a monotonic counter when you start
sgx_increment_monotonic_counter(*counter_uuid, *value)

e sleep

e check that it’s still the same
sgx_read_monotonic_counter(*counter uuid, *value)

Proof of time 2 - Implementation

Key challenge: prevent parallel execution
Solution: counters

e (during node setup) create a monotonic counter
sgx_cPeate_monotonic_counter(*@ounter_uuid} *value)

e increment a monotonic counter when you start
sgx_increment_monotonic_counter(*counter_uuid} *value)

e sleep

e check that it’s still the same
sgx_read_monotonic_counter(*counter_uuid} *value)

Proof of time 2 - Implementation

Key challenge: what was our monotonic counter?

e Communication must pass through untrusted application
e Storage must pass through untrusted application

Proof of time 2 - Implementation

Key challenge: which monotonic counter?

Solution: all of them

SGX_ERROR_MC_OVER_QUOTA

The enclave has reached the quota(256)
of Monotonic Counters it can maintain

https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf

Proof of time Z - Implementation

Key challenge: which monotonic counter?
Solution: all of them

e create 256 monotonic counters
e sleep
e make sure you still have all 256

Proof of time Z - Compromised CPUs

Big incentive to compromise individual CPUs
You can mine way faster than the rest of the network

Intel manages a revocation list of known compromised CPUs

Proof of time 2

Desirable properties:

e ASICs provide no advantage
e No wasted energy

But CPU compromise is still an issue

Reduces mining to ownership of SGX CPUs

Proof of ownership ﬁ

Just count number of CPUs “voting” for a new block

The votes (SGX quotes)
are privacy preserving

Intel’s Enhanced Privacy ID (EPID)
algorithm can determine whether
two quotes with same name came
from the same CPU or not

o 1

o

// Inside SGX.

: function sGxPoO(nonce)

return SGX.REPORT(nonce)

: end function

// Outside SGX.

: function PoO(nonce)

report < SGXP0O(nonce)

// We use nonce for the quote name.

return SGX.QUOTE(report, nonce)
end function

Proof of ownership ﬁ

Scalability: Name Base Mode

With Name Base Mode, the scheme
implementer must ensure a particular
name is not used too much.

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

Proof of ownership ﬁ

Scalability: network messages
Every node votes on each block

That’s a lot of votes

Consensus Overview

ASIC resistant | Energy efficient | Time efficient | Scalable

Bitcoin no no no yes
SGX proof of work yes no no yes
g Proof of time yes yes no yes
D Proof of ownership yes yes yes no

Working on combining these to compensate for individual schemes’ shortcomings

Smart Contracts

Smart Contracts

One node executes the contract in an enclave
Create a quote with the result
Disseminate the quote

Easily combine confidentiality and auditability

Smart Contracts

Only one node has to execute the contract
Others just verify the quote
Non-deterministic contract code

Reduces smart contracts to availability

Issues

Issue #1
Unclear licensing and terms of use for SGX by Intel

SGX is being shipped in hardware, but to launch an enclave, it has to be
authorized by Intel’s launch enclave.

It is unclear how will launch enclave decide that, probably based on a business
partnership with Intel.

Intel might terminate previously given authorization to launch at their discretion.

Issue #2
Centralized remote attestation service

To do a remote attestation, you have to contact Intel’s cloud service.”

This allows them to verify quotes against compromised CPUs and other
revocation lists.

A 3rd party (decentralized?) alternative might be possible to be implemented.

But would they allow such 3rd party enclave to run?

*https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

Issue #3
Disabled by default

A BIOS setting.

Not a problem for miners, but what about non-technical end-users?

Mobile (thin) devices don't even have SGX.

Summary

Promising new primitives. More work needed to create a robust, tamper-proof
solution.

Already a nice match to augment permissioned and centralized cryptocurrencies
and give additional trust anchor to simplify and optimize the rest of the stack.

Unclear if suitable for decentralized cryptocurrencies: an open ecosystem around
SGX would help alleviate concerns.

Towards Automation of Correctness Proofs of Smart Contracts

Dawn Song

Joint work with Aymeric Fromherz

Smart Contract is Hard to Get Right

® Smart contract can be complex & subtle

® Corner cases may not be handled properly
O E.g., leaking money in certain cases [Shi et al.]

® No tools to help analyze & prove correctness of smart
contracts

Automatic Correctness Proof via Coq

Ethereum
Contracts

Compiler

Property
Annotation

(@

Coq code

Correctness proof

Coq Theorem

+
Theorems

J

Prover

Lemma
Generator

Proof
Structure

Lemma

Libraries Tactics

Example: Preservation Property

e Certain property of global state stay constant over state changes
o Banking system: Total money across different accounts stay constant at any point
o Auction system: there is one highest bidder in the system at any point

o Voting system: total counts (votes + non-votes) stay the same in the system at any point

e Automatic proof
o Proof structure tactics for preservation property

o Automatic generation of lemma libraries

e Proofs & errors found in real-world ethereum contracts

Conclusion

e Smart contract is hard to get right

e First step towards automatic analysis and proof of correctness of smart contract

e Lots more to do

